
COP 3223: C Programming (Control Structures – Part 2) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Program Control Structures In C – Part 2

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Control Structures – Part 2) Page 2 © Dr. Mark J. Llewellyn

Control Structures In C

• C provides three types of repetition structures in form of

statements.

1. The while repetition statement allows an action to be repeated as

long as some condition remains true. This is a “top-tested” repetition

statement, which means that the condition is evaluated before the

action is executed the first time. If the condition is initially false, the

action is not performed even once.

2. The do…while repetition statement allows an action to be repeated

as long as some condition remains true. This is a “bottom-tested”

repetition statement, which means that the condition is not evaluated

until the action is performed the first time. Thus, the action is always

performed at least once with this type of repetition statement.

3. The for repetition statement repeats an action a specific number of

times based upon a counter value (an integer). This repetition

statement is referred to as a “counted loop” statement.

COP 3223: C Programming (Control Structures – Part 2) Page 3 © Dr. Mark J. Llewellyn

The while Repetition Statement

• The format of the while repetition statement is:

while (condition) {

statements;

}

statement x;

• The condition is any expression which evaluates to true or false

(i.e., a Boolean expression).

• When a while statement (also called while loop) is executed,

the condition is evaluated first. If its value is nonzero (true) the

statements in the body of the while loop are executed and the

expression is evaluated again. Execution of the statements in the

body of the loop continue as long as the condition remains true.

These statements are

executed only if the condition

evaluates to true. Statement

x is the first statement to be

executed when the condition

is false.

COP 3223: C Programming (Control Structures – Part 2) Page 4 © Dr. Mark J. Llewellyn

The while Repetition Statement

• The program on the following page uses a while

statement to print the sum of the first 10 integers (one

integer at a time).

COMMON PROGRAMMING ERROR:

Assuming that a while statement’s condition is initially true and
execution enters the body of the while statement, there must be some
statement within the body of statements that changes the value of the
condition. Otherwise, the condition will always remain true and
execution of the loop will never terminate. This is called an “infinite
loop”.

Always make sure that there is some statement inside the body of
statements in a while loop that will eventually cause the condition to
evaluate to false.

COP 3223: C Programming (Control Structures – Part 2) Page 5 © Dr. Mark J. Llewellyn

Sample while statement

program

This is the statement that modifies the

conditional expression. Eventually, the
currentValue will become greater

than the upperLimit, thus

terminating the statement.

COP 3223: C Programming (Control Structures – Part 2) Page 6 © Dr. Mark J. Llewellyn

An Aside On Increment and Decrement Operators

• Two very common variable operations that occur in programs,

especially so in loop bodies, are incrementing (usually adding 1)

and decrementing (usually subtracting 1).

• For example:

i = i + 1; //increment operation

j = j – 1; //decrement operation

• C provides the ++ (increment) and −− (decrement) operators as a

way to shorten the expressions shown above into:

i++; //increment operator

j--; //decrement operator

COP 3223: C Programming (Control Structures – Part 2) Page 7 © Dr. Mark J. Llewellyn

An Aside On Increment and Decrement Operators

• While this may seem fairly simple, it is unfortunately more

complicated than it seems.

• The first complication is that either operator can be used as

either a prefix operator (++i and -–j) or postfix operator

(i++ and j--).

• The prefix version increments the variable before its use (the

reference to the variable) while the postfix version

increments the variable after its use.

• To help you keep this straight think of ++i as a “pre-

increment operator” and i++ as a “post-increment

operator”.

COP 3223: C Programming (Control Structures – Part 2) Page 8 © Dr. Mark J. Llewellyn

Notice that in this case the use

of the prefix increment operator

did not affect the output, i.e., the

loop ran the same number of

time.

COP 3223: C Programming (Control Structures – Part 2) Page 9 © Dr. Mark J. Llewellyn

I moved the increment operator to inside the

condition. Notice that in this case the use of the

prefix increment operator did affect the output,

i.e., the loop “missed” the first value of 1 and thus,

all of our running sum numbers are incorrect!

COP 3223: C Programming (Control Structures – Part 2) Page 10 © Dr. Mark J. Llewellyn

I moved the increment operator to inside the

condition. Notice that in this case the use of the

postfix increment operator did again affect the

output, i.e., the loop “missed” the first value of 1

and thus, all of our running sum numbers are

incorrect, plus the loop iterated through the 11th

integer!

COP 3223: C Programming (Control Structures – Part 2) Page 11 © Dr. Mark J. Llewellyn

Another Aside On Compound Assignment Operators

• Another shorthand C operator is the compound assignment

operator that is again helpful with typical increment and

decrement operations. An example of this appears in the

program on page 5 (line 14).

• The compound assignment operator converts:

i = i + 1; and j = j – 1;

to: i += 1; and j -= 1;

• Unlike with the increment and decrement operators, there are

three more compound assignment operators, which are:

*=, /=, and %=

• The program on the next page illustrates these operators.

COP 3223: C Programming (Control Structures – Part 2) Page 12 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures – Part 2) Page 13 © Dr. Mark J. Llewellyn

Yet Another Aside On Arithmetic In C

• C allows the programmer a fair amount of flexibility when it

comes to mixing types of operands inside arithmetic

statements.

• For example, suppose we have:

int num1; double num2;

num1 + num2 or num2 + num1;

num1 * num2 or num2 * num1;

num1 – num2 or num2 – num1;

num1 / num2 or num2 / num1;

• All of these are perfectly legal arithmetic expressions in C.

COP 3223: C Programming (Control Structures – Part 2) Page 14 © Dr. Mark J. Llewellyn

Yet Another Aside On Arithmetic In C

• However, the same is not quite true when it comes to the

assignment statement, as many of you have discovered while

working on the first assignment. So, I’ll take a few pages

here to give a quick overview of arithmetic assignments in C.

• C includes a number of automatic type conversions, known

as implicit conversions. Because C has so many different

arithmetic types, the implicit conversion rules are somewhat

complex, so we’ll introduce only a few right now and hold

off on the others until later in the semester.

• C also provides the programmer the capability of performing

explicit conversions using the cast operator. We’ll also hold

this discussion until later in the semester.

COP 3223: C Programming (Control Structures – Part 2) Page 15 © Dr. Mark J. Llewellyn

Yet Another Aside On Arithmetic In C

• Implicit conversions are performed in the following

situations:

– When the operands in an arithmetic or logical expression don’t have

the same type. In this case C performs what are referred to as the

usual arithmetic conversions.

– When the type of the expression on the right side of an assignment

operator does not match the type of the variable on the left side.

– When the type of an argument in a function call does not match the

type of the corresponding parameter (we’ll see this later too).

– When the type of the expression in a return statement does not match

the function’s return type (we’ll see more on this later as well).

• For now we’ll look only at the first two cases.

COP 3223: C Programming (Control Structures – Part 2) Page 16 © Dr. Mark J. Llewellyn

Yet Another Aside On Arithmetic In C

• Most computer hardware only evaluates arithmetic

expressions in which the operands are of the same type, the

compiler must generate code that ensures the types of all

operands are the same.

• To ensure this, the compiler performs an operation known as

promotion (implicit conversion) on selected operands in the

expression.

• For example, suppose we have:

int i; double d;

then in i+d the types are not the same, so the compiler

must promote the type of i to double.

COP 3223: C Programming (Control Structures – Part 2) Page 17 © Dr. Mark J. Llewellyn

Yet Another Aside On Arithmetic In C

• Why is i converted to a double and not d converted to an

int?

• Answer: Loss of precision.

• Consider: i = 3; d = 4.67;

• If i is converted to a double then i + d = 7.67

• If d is converted to an int then i + d = 7 and the fractional

part of d is simply lost!

• In compiler lingo, a promotion is called a widening conversion,

because it prevents a loss of precision.

• The typical compiler strategy is to convert operands to the

“narrowest” type that will safely accommodate both operand

values.

COP 3223: C Programming (Control Structures – Part 2) Page 18 © Dr. Mark J. Llewellyn

Yet Another Aside On Arithmetic In C

• To give you an even more concrete example from your homework

assignment, consider problem 1A (the gas expense problem).

• You will have defined variables such as:

int milesPerGallon, milesDriven;

double pricePerGallon, cost;

• The expression you need to solve your problem looks like one of

the following, but which one?

cost = milesDriven / milesPerGallon * pricePerGallon;

cost = pricePerGallon * milesDriven / milesPerGallon;

COP 3223: C Programming (Control Structures – Part 2) Page 19 © Dr. Mark J. Llewellyn

Yet Another Aside On Arithmetic In C

• In the absence of parentheses to override normal precedence rules,

C uses normal arithmetic operator precedence evaluating

expressions left to right.

• Using the first expression we would have:

cost = milesDriven / milesPerGallon * pricePerGallon;

int / int

1000 24

= 41.667 * 3.00 (double)

= 41 (int)

= 123.00 (double)

COP 3223: C Programming (Control Structures – Part 2) Page 20 © Dr. Mark J. Llewellyn

Yet Another Aside On Arithmetic In C

• Using the second expression we would have:

cost = pricePerGallon * milesDriven / milesPerGallon;

double * int

3.00 1000

= 3000.00 (double) / 24 (int)

= 125.00 (double)

HINT: This is the correct version!!

COP 3223: C Programming (Control Structures – Part 2) Page 21 © Dr. Mark J. Llewellyn

The do…while Repetition Statement

• The do…while repetition statement is similar to the

while statement except for one difference.

• That difference is that the while statement evaluates the

condition at the beginning of the loop before the body of

the loop is performed. Thus, if the condition evaluates the

first time to false (zero) the body of the loop is never

executed.

• The do…while statement evaluates the condition after the

body of the statement (the loop) is executed. Therefore,

the body of the loop will ALWAYS be executed at least

once, even if the condition is initially false.

COP 3223: C Programming (Control Structures – Part 2) Page 22 © Dr. Mark J. Llewellyn

The do…while Repetition Statement

• The format of the do…while statement is:

do {

statements;

} while (condition);

GOOD PROGRAMMING PRACTICE:

A with other selection and repetition statements we’ve encountered, it is

technically not necessary to include the braces on the body of the loop if it

contains a single statement. However, it will enhance the readability of the code if

they are always present.

COP 3223: C Programming (Control Structures – Part 2) Page 23 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures – Part 2) Page 24 © Dr. Mark J. Llewellyn

Illustrating The Operational Differences
Between The while And The

do…while Statements

• The programs on the next two pages illustrate the difference

between how the while and the do…while statements execute.

• Again, this difference is that the while statement is a “top-

tested” loop and the do…while statement is a “bottom-tested”

loop.

• All I did was modify the original sum of the first 10 integers

program from pages 5 and 15 to include the addition of a variable

to control whether or not the loop is executed.

• Be sure you understand completely the operational differences

between these two statements.

COP 3223: C Programming (Control Structures – Part 2) Page 25 © Dr. Mark J. Llewellyn

Since doLoop is false, the

condition of the while loop is

initially false, so no statements

in the loop body are executed.

COP 3223: C Programming (Control Structures – Part 2) Page 26 © Dr. Mark J. Llewellyn

Since doLoop is false, the

condition of the while loop is

initially false, but this is not tested

until the statements in the loop

body are executed the first time.

COP 3223: C Programming (Control Structures – Part 2) Page 27 © Dr. Mark J. Llewellyn

The for Repetition Statement

• The for repetition statement is considered a counted loop,

but in actuality is very similar to the while statement and

except for a few rare cases, a for statement can always be

replaced by a while statement.

• The general format of a for statement is:

for (expression1; expression2; expression3) {

statement;

}

• As with other control statements, the braces are not required

if the body consists of a single statement, but again, common

programming practice is to always include the braces.

COP 3223: C Programming (Control Structures – Part 2) Page 28 © Dr. Mark J. Llewellyn

The for Repetition Statement

• In the general format of a for statement:

expression1 is an initialization expression that is

performed only once, before any of the statements in the loop

are executed.

expression2 controls the loop termination. The loop

continues to execute as long as the value of expression2

is true (nonzero).

expression3 is an operation that is performed at the end

of each loop iteration. Typically, expression3 is used to

ensure that the value of expression2 eventually becomes

false (zero).

COP 3223: C Programming (Control Structures – Part 2) Page 29 © Dr. Mark J. Llewellyn

The for Repetition Statement

• The most common use of the expressions in the for

statement are shown below:

for (counter = 1; counter <= 10; counter++)

Keyword
for

Required
semicolon

Required
semicolon

Loop control

variable with
initial value

Increment (or

decrement) of

loop control
variable

Loop continuation

conditional
expression

COP 3223: C Programming (Control Structures – Part 2) Page 30 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Control Structures – Part 2) Page 31 © Dr. Mark J. Llewellyn

The for Repetition Statement

• It is possible in the for statement to omit any or all of the

expressions; which would leave a format of:

for(; ;)

• The most common cases omit either or both of the first and third
expressions leaving for (; expression2;). In cases

such as these, it is assumed that (1) the initial value of the loop

control variable is set before the loop is executed, and (2) some

statement inside the loop is responsible for ensuring that the value of
expression2 eventually becomes false (zero).

• If expression2 is omitted, it defaults to a true value, and the loop

never terminates (an infinite loop) which will require some outside

intervention to stop the program! Except in very unusual

circumstances you don’t want this to happen, so always include an
expression2 in your for statements.

COP 3223: C Programming (Control Structures – Part 2) Page 32 © Dr. Mark J. Llewellyn

for statement with expression1

missing. Notice that the loop control

variable is initialize before the loop

begins.

COP 3223: C Programming (Control Structures – Part 2) Page 33 © Dr. Mark J. Llewellyn

for statement with both expression1

and expression2 missing. Notice that

the loop control variable is initialize

before the loop begins and the statement

inside the loop that modifies the value of

the loop control variable.

COP 3223: C Programming (Control Structures – Part 2) Page 34 © Dr. Mark J. Llewellyn

Similarity Of The for And while Statements

• To illustrate how similar the for and while statement are, consider the

general form of a for statement as shown below and how this would be

represented using a while statement (plus additional statements).

The for statement:

for(expression1; expression2; expression3)

An equivalent while statement:

expression1;

while (expression2){

statements;

expression3;

}

• The program on the next page is a while statement version of the for statement

example program on page 30, which illustrates this equivalence.

COP 3223: C Programming (Control Structures – Part 2) Page 35 © Dr. Mark J. Llewellyn

expression1

expression2

expression3

COP 3223: C Programming (Control Structures – Part 2) Page 36 © Dr. Mark J. Llewellyn

Practice Problems
1. Construct a C program that uses while statements to produce

multiplication tables from 1 to 10 for the integer values from 1
to 10.

COP 3223: C Programming (Control Structures – Part 2) Page 37 © Dr. Mark J. Llewellyn

Practice Problems
2. Construct a C program that produces a chessboard pattern as

shown.

COP 3223: C Programming (Control Structures – Part 2) Page 38 © Dr. Mark J. Llewellyn

Practice Problems
3. Construct a C program that prints both the sum and product of

the first fifteen integer values.

